
Detection of local affinity patterns in big data
Andrea Marinoni, Paolo Gamba

Department of Electronics, University of Pavia, Italy

Abstract

Mining information in Big Data requires to design a new class of algorithms and
methods so that the computational complexity load is acceptable and the informat
ivity loss is avoided. Information theory-based methodologies can represent a valid
option in this sense. In this paper, we introduce a novel method to efficiently
detect local affinity patterns within Big Data sets. The proposed architecture,
named PROMODE, is based on an undirected bipartite graph representation of
the given dataset. Progressively spanning the graph, it is possible to detect all
the affinities within the data. It is possible to prove how the proposed framework
deliver a computational load that is less than that provided by the other algorithms
in literature.

Introduction

Recently, wide-range innovation in information technology field allowed acqui-
sition, collection and storing of a huge amount of data. Moreover, the records
typically come from a broad spectrum of data sources and show high variability.
The aforesaid properties summarize the fundamentals of the so-called "Big Data"
paradigm.

Classic data mining, clustering and classification architectures that approach
databases which fulfill those conditions require a pre-processing step s.t. a re-
markable dimensionality reduction is performed. However, since very poor a
priori informations are available for big datasets, standard feature selection and
extraction algorithms can not efficiently work.

Therefore, benchmark data processing methods should thoroughly handle the
whole amount of data s.t. no informativity would get lost. This requirement
results in a very heavy load in terms of computational complexity that delivers
consequent latency increase and large memory consumption. Thus, the quality
of the considered analysis can be dramatically degraded [1].

The substantial trade-off between process quality and computational cost makes
the need of more efficient methods for data processing become urgent. Hence,
it is necessary to study, design and develop new data analysis schemes s.t. the
complexity load can be strongly reduced without turning their effectiveness mild
[1].

Information theory might actually help in that sense. Specifically, information
theory-based methods can guarantee to keep the data informativity by using
proper information rate metrics and managing the given relationships s.t. the

27

Andrea Marinoni, Paolo Gamba

data inference is optimized. Therefore, this kind of structures can provide efficient
data analysis tools for feature selection process, high-performance classification
algorithms and proper parametric modeling optimization.

Taking a close look to Big Data affinity mining field, information theory can de-
liver effective identification of affinity patterns while overcoming the issue caused
by the lack of prior informations. In fact, the search of affinities over large
datasets becomes quickly cumbersome as no efficient dimensionality reduction
can be performed. Therefore, as previously mentioned, the quality of the stan-
dard affinity mining process can be jeopardized.

In this paper, a new information theory-based method for high-efficiency affinity
mining in Big Data is introduced. Specifically, the proposed algorithm aims at
delivering a thorough affinity analysis over a given dataset by means of a proper
bipartite graph representation of the interactions among the samples. Moreover,
this method provides top performance in terms of computational complexity as
well.

The paper is organized as follows. Section System model introduces the elements
of affinity mining and the definitions and notations that will be used throughout
the whole paper. Section Methods provides the description of classic affinity
mining algorithms and of the proposed method for detection of local affinity
patterns. Further, Section Performance results shows the performance results,
whilst Section Conclusions delivers the final discussion.

System model

Let us consider a dataset that is composed by P samples. Each sample is char-
acterized by S attributes. Thus, the given dataset can be identified by a P × S
matrix H = {Hi}i=1,...,P , Hi = [Hij]j=1,...,S , Hij ∈ Ω ⊆ R. A set of L samples
shows an affinity over the j-th attribute if ∀(k, l) ∈ Λ ⊆ {1, . . . , P}, |Λ| = L ≤ P
it fulfills a proper condition that can be summarized as follows:

||Hkj −Hlj || ≤ τj (1)

where τj ∈ R≥0 is a given threshold for the j-th attribute.

Thus, an affinity criterion can be identified by a set of thresholds T = [τj]j∈Σ,
Σ ⊆ {1, . . . , S}. Further, affinity mining ’s goal is to find the samples that fulfill
the conditions induced by a given affinity criterion. Affinity mining results in
the identification of patterns of affinities that show up in some regions of the
given dataset. Therefore, a local affinity pattern (LAP) is defined as a set Π of
|Π| ≤ P samples that are affine over a set Σ of |Σ| ≤ S attributes according to a
given criterion.

It is worth to note that setting the criteria thresholds does not necessarily imply
prior informations. Indeed, each element in a criterion T is a parameter that

28

Detection of local affinity patterns in big data

can be properly tuned according to the desired analysis. E.g., if we define T s.t.
τj = 0 ∀j ∈ J ⊆ {1, . . . , S}, affinity mining delivers the LAPs composed by the
samples that show the same exact value over their attributes identified by the
indices in J .

Furthermore, the elements of H can be subject to data cleansing, i.e., inaccurate
or irrelevant records w.r.t. a given analysis can be filtered out by the dataset.
This pre-analysis step can be performed by setting to a given value the elements
ofH that have been cleaned, e.g., Hij = 0 ifHij is not relevant. It is important to
note that data cleansing do not lead to sparse datasets. In fact, this step does not
require specific a priori knowledge. Thus, to prevent informativity losses, this
process just removes the incorrect data and takes out of the analysis the elements
that occur as outliers w.r.t. given distributions that can be properly tuned.
Therefore, data cleansing can not be considered as an instance of dimensionality
reduction or feature extraction [2].

Throughout this paper, we assume that the datasets have been properly cleaned,
i.e., if Hij = 0 the i-th sample does not show a relevant record over the j-
th attribute. Moreover, without losing generality, we assume that the affinity
criteria rely on the local exact match condition, i.e., samples k and l are affine
over the j-th attribute if ||Hkj −Hlj || = 0. The methods in Section are based
on these assumptions.

Methods

Background

As previously mentioned, several methods have been developed to face affinity
mining problems. When performing an affinity search, classic algorithms typically
require to draw the transaction graph induced by the given database [3]. In other
terms, given a set of P samples, it is possible to progressively outline a depth-
P graph where each instance at depth-p identifies one of the

(
P
p

)
combinations

of different p samples that can be laid out. Thus, it is possible to arrange the
aforesaid graph in a depth-P tree-like way. Fig. 1 depicts a transaction graph
for a dataset counting P = 4 samples. It is worth to note that the definition of
sample combination differs w.r.t. the application that is considered. Specifically,
when affinity mining is performed, a sample combination in the aforesaid graph
represents a LAP.

In order to provide a computationally efficient affinity search, frequent subgraph
mining algorithms (FSMAs) [3] are widely used. These methods take advantage
of all possible prior knowledge s.t. the transaction graph can be properly pruned.
This step is performed depending on the frequency parameter, which can be
properly set according to the considered problem. Fig. 1 reports what happens
to the graph in Fig. 1 when FSMAs apply to it, assuming that sample A is

29

Andrea Marinoni, Paolo Gamba

marked as infrequent. Basically, if sample A does not comply with the required
frequency condition, the whole subgraph generated from the A-node (red in Fig.
1) can be peeled out of the analysis. Therefore, the computational costs for
this search are less than those required by the thorough analysis over the whole
transaction graph.

Figure 1: Transaction tree for a dataset which counts P = 4 samples, namely A, B,
C and D. 0 represents the root of the tree. The red branches and nodes are filtered out
of the search by frequent subgraph mining algorithms (FMSAs) if sample A is marked
as infrequent.

FSMAs actually provide good trade-off in terms of computational complexity
and mining performance. However, when poor or no a priori informations are
available, FSMAs can not deliver efficient results. Further, if the aforementioned
pruning step is performed when only inadequate knowledge of the dataset and/or
of the desired outcomes is supplied, informativity loss can occur.

Thus, in such conditions, a thorough search throughout the whole transaction tree
provided by depth-first search (DFS)-based methods is necessary to prevent any
important information leakage. On the other hand, DFS is not computationally
efficient at all. Several instances of optimized DFS algorithm have been proposed
in literature, such as iterative deepening DFS or lexicographic ordered DFS.
However, these algorithms work well in specific mining, i.e., when some prior
knowledge is available.

Another approach for affinity mining can be based on minimum-cost path search
over transaction graph using Dijkstra algorithm [4]. Specifically, Dijkstra algo-

30

Detection of local affinity patterns in big data

rithm finds the shortest (i.e., minimum-cost, according to a given metric) path
starting from a given graph vertex. Hence, tuning the cost parameter w.r.t. the
desired affinity mining over the given dataset, it is possible to find the LAPs
starting from a given sample node. Therefore, Dijkstra algorithm, as DFS, does
not require prior knowledge to work. However, it gets computationally efficient
as the search dataset size gets smaller.

The aforementioned issues make the design of a new affinity mining method that
can efficiently (both in terms of search performance and computational costs)
work over datasets with no a priori informations become necessary. The following
Section introduce the method we propose.

Progressive molecule detection (PROMODE)

Let H be a dataset which consists of P samples that show S attributes. Let us
assume H to be properly data cleaned, as in Section . Thus, it is possible to draw
an undirected bipartite graph that identify the given dataset. Specifically, two
classes of nodes, named p-nodes and s-nodes, represent each sample and attribute
in H, respectively. In this paper, we alternatively use the p-nodes - s-nodes and
sample-attribute notations. The edge that links the i-th p-node to the j-th s-
node identifies the dataset element Hij . Hence, if Hij has been considered not
relevant by data cleansing, no edge connects p-node i to s-node j. Otherwise,
the edge shows a weight Hij . Further, let us define the degree of the i-th p-
node dpi as the number of relevant attributes that the i-th sample shows, i.e.,
dpi =

∑S
j=1 χ(Hij), where χ(z) = 1↔ z > 0. Analogously, the degree of the j-th

s-node dsj can be defined as the number of samples that show relevant data over
the j-th attribute, i.e., dsj =

∑P
i=1 χ(Hij).

E.g., let us consider a dataset H ′ =
{
H ′ij
}

(i,j)∈{1,...,P}×{1,...,S}, P = 6, S = 11,
H ′ij ∈ {0,1,2}, where H ′ij = 0 if the j-th attribute of the i-th sample has been
called as not relevant. H ′ is reported in Fig. 2: p-nodes are shown as red squares,
whilst s-nodes are identified by blue circles. Taking into account the quantities
that have been previously introduced, it is possible to note that in this dataset
dp1 = 5 while dp4 = 8: on the other hand, ds1 = 2 while ds3 = 4. Further, Fig.
2 shows the bipartite graph that is induced by H ′. It is possible to notice that
the width of the edges changes according to their weights. Specifically, the edges
that have a weight set to 2 show a width that is thicker than that showed by the
edges whose weight is 1.

From this new bipartite graph representation of a dataset, in order to efficiently
identify the LAPs, we propose to use a different approach w.r.t. those introduced
in Section . Basically, we aim at producing a thorough LAP detection analysis
for each p-node of the bipartite graph. Since the bipartite graph can be seen
as a polymer of two atoms (p-nodes and s-nodes), it is possible to identify by
analogy LAPs as molecules in this structure. Therefore, we provide a progressive
molecule detection algorithm, which is named PROMODE.

31

Andrea Marinoni, Paolo Gamba

Figure 2: Bipartite graph representation of dataset H ′

Thus, let us assume we want to find the LAPs that involve the i-th p-node. First,
we work on cutting all the edges that surely do not lead to a LAP. In this step, we
observe that if the links of a given s-node to two p-nodes are not affine, then that
s-node can not be involved for sure in a LAP. Thus, if ∀j = 1, . . . , S each Hkj is
not affine to Hij , then the k-th p-node can not be involved in any LAP entailing
p-node i. Further, we work on every possible combination of the surviving p-
nodes so that it is possible to sieve the LAPs. Specifically, the s-nodes which
identify no affinity attributes w.r.t. the given combination of p-nodes involving
p-node i are filtered out. Moreover, it is important to note that it is possible to
reduce the computational costs by taking track of the cut branches. Finally, we
progressively iterate this procedure until all the p-nodes have been analyzed.

Performance results

As it has been introduced in the previous Section, Dijkstra-based method, DFS-
based algorithm and PROMODE can provide exhaustive search of LAPs over
a given dataset with no prior informations. However, the computational cost
required by each procedure is very different. Thus, in this Section, we deliver
an estimate of the computational complexity implied by each algorithm by com-
puting the number of total required operations over a P -samples S-attributes
dataset.

32

Detection of local affinity patterns in big data

Specifically, when we consider Dijkstra-based methods, we have to first compare
each couple of samples. Then, we must work on every possible combinations
of these pairs to find the minimum-affinity-cost path among the samples in the
induced graph. Hence, CDIJ, i.e., the number of total operations required by a
Dijkstra-based method, can be written as follows:

CDIJ = S ·
(P
2)∑
j=2

((P
2

)
j

)
(2)

On the other hand, when considering a DFS-based procedure, we must draw the
transaction tree of all possible combinations of samples up to depth P in order
not to avoid any LAP from the detection. Therefore, if we define CDFS as the
number of total operations required by a DFS-based method, we can write the
following equation:

CDFS = S ·
P∑
j=2

(
P

j

)
(3)

Apparently, CDIJ > CDFS, i.e., DFS-based algorithms should outperform Dijkstra-
based methods in terms of computational complexity for exhaustive LAP detec-
tion. However, CDFS identifies a very large amount of required operations, which
directly converts into latency and memory consumption. PROMODE procedure
can overcome this issue. In fact, by means of the analysis over the bipartite graph
representation, we reduce the computational cost by carefully selecting the edges
which can lead to LAPs. Thus, we can define CPMD, which is the number of
required operations by PROMODE architecture, as follows:

CPMD ≤
P∑
i=1

dpi ·

(P − 1) +

dmi∑
j=1

(
dmi

j

) (4)

where dpi is number of relevant attributes that the i-th sample shows and dmi

identifies the number of p-nodes which are somehow affine to the i-th p-node.
Hence, it is possible to prove that sup(CPMD) < CDFS.

Conclusions

In this paper, a novel architecture for searching of local affinity patterns in Big
Data is introduced. The aforementioned method, named PROMODE, aims at
detecting all the affinities in a given dataset taking advantage of a proper repre-
sentation of the analyzed database in terms of undirected bipartite graph. It has

33

Andrea Marinoni, Paolo Gamba

been shown how PROMODE actually outperforms the other algorithms in liter-
ature in terms of computational complexity. Thus, PROMODE might represent
a valid option for Big Data applications, in order to provide efficient mining with
low computational cost while preventing any information loss.

References

[1] D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of google
flu: traps in big data analysis. Science, 343:1203–1205, March 2014.

[2] S. Wu. A review on coarse warranty data and analysis. Reliability Engineering
and System, 114:1–11, 2013.

[3] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 0:1–31, 2004.

[4] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

34

